Spatio-temporal mode dynamics and higher order transitions in high aspect ratio Newtonian Taylor–Couette flows

Author:

DUTCHER CARI S.,MULLER SUSAN J.

Abstract

Spatial and temporal frequency dynamics were experimentally tracked via flow visualization for Newtonian fluids as a function of the inner cylinder Reynolds number (Rei) in the flow between concentric, independently rotating cylinders with a radius ratio of 0.912 and an aspect ratio of 60.7. Eight transitions from laminar to turbulent flow were characterized in detail for a stationary outer cylinder, producing highly resolved space–time and frequency–time plots for wavy, modulated and weakly turbulent states. A previously unreported early-modulated wavy vortex flow was found in our high aspect ratio geometry both with and without the presence of a dislocation. The envelope of stability for this flow state was shown to cross into the co-rotating regime, and is present up to Reo ~ 60, where Reo is the outer cylinder Reynolds number. This early modulation is independent of acceleration in the range 0.18 < dRei/dτ < 2.9, where τ is the time nondimensionalized with a viscous time scale. While many of the flow states have been previously observed in geometries with somewhat different radius ratios, we provide new characterization of transitional structures for Reo = 0 in the range 0 < Re* < 21.4, where Re* = Rei/Rec and Rec is the value of Rei at the primary instability. Special attention has been given to ramp rate. For quasi-static ramps, axisymmetric states are stable over the ranges of Re* = [(0–1.17), > 15.4], states characterized by a single distinct temporal frequency for Re* = [(1.17–1.41), (3.56–5.20), (7.85–15.4)], states with multiple temporal frequencies for Re* = [(1.41–3.56), (5.20–7.85)], and a transition from laminar to weakly turbulent vortices occurs at Re* = 5.49. All flow states are characterized by symmetry/symmetry-breaking features as well as azimuthal and axial wavenumbers.

Publisher

Cambridge University Press (CUP)

Reference55 articles.

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3