Temporal and spatial incidence of alleles conferring knockdown resistance to pyrethroids in the peach–potato aphid,Myzus persicae(Hemiptera: Aphididae), and their association with other insecticide resistance mechanisms

Author:

Anstead J.A.,Mallet J.,Denholm I.

Abstract

AbstractThe peach–potato aphid,Myzus persicae(sulzer), is an important arable pest species throughout the world. Extensive use of insecticides has led to the selection of resistance to most chemical classes including organochlorines, organophosphates, carbamates and pyrethroids. Resistance to pyrethroids is often the result of mutations in thepara-type sodium channel protein (knockdown resistance orkdr). InM. persicae, knockdown resistance is associated with two amino-acid substitutions, L1014F (kdr) and M918T (super-kdr). In this study, the temporal and spatial distributions of these mutations, diagnosed using an allelic discriminating polymerase chain reaction assay, were investigated alongside other resistance mechanisms (modified acetylcholinesterase (MACE) and elevated carboxylesterases). Samples were collected from the UK, mainland Europe, Zimbabwe and south-eastern Australia. Thekdrmutation and elevated carboxylesterases were widely distributed and recorded from nearly every country. MACE andsuper-kdrwere widespread in Europe but absent from Australian samples. The detection of a strongly significant heterozygote excess for bothkdrandsuper-kdrthroughout implies strong selection against individuals homozygous for these resistance mutations. The pattern of distribution found in the UK seemed to indicate strong selection against thesuper-kdr(but not thekdr) mutation in any genotype, in the absence of insecticide pressure. There was a significant association (linkage disequilibrium) between different resistance mechanisms, which was probably promoted by a lack of recombination due to parthenogenesis.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3