Unbounded Sturm attractors for quasilinear parabolic equations

Author:

Lappicy PhillipoORCID,Fernandes Juliana

Abstract

AbstractWe analyse the asymptotic dynamics of quasilinear parabolic equations when solutions may grow up (i.e. blow up in infinite time). For such models, there is a global attractor which is unbounded and the semiflow induces a nonlinear dynamics at infinity by means of a Poincaré projection. In case the dynamics at infinity is given by a semilinear equation, then it is gradient, consisting of the so-called equilibria at infinity and their corresponding heteroclinics. Moreover, the diffusion and reaction compete for the dimensionality of the induced dynamics at infinity. If the equilibria are hyperbolic, we explicitly prove the occurrence of heteroclinics between bounded equilibria and/or equilibria at infinity. These unbounded global attractors describe the space of admissible initial data at event horizons of certain black holes.

Publisher

Cambridge University Press (CUP)

Reference45 articles.

1. (7) Ben-Gal, N. , Grow-Up Solutions and Heteroclinics to Infinity for Scalar Parabolic PDEs, Ph.D. Thesis . (Division of Applied Mathematics, Brown University, 2010).

2. Sur une classe d’équations à différences partielles;Sturm;J. Math. Pures. Appl. I,1836

3. Dynamics of parabolic equations: from classical solutions to metasolutions;López-Gómez;Diff. Integral Eq.,2003

4. Asymptotic behavior of degenerate logistic equations;Arrieta;J. Diff. Eq.,2015

5. Approaching metasolutions by solutions;López-Gómez;Diff. Integral Eq.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3