Convergence results for primal and dual history-dependent quasivariational inequalities

Author:

Sofonea Mircea,Benraouda Ahlem

Abstract

AbstractWe consider a class of history-dependent quasivariational inequalities for which we prove the continuous dependence of the solution with respect to the set of constraints. Then, under additional assumptions, we associate with each inequality in the class a new inequality, the so-called dual variational inequality, for which we state and prove existence, uniqueness, equivalence and convergence results. The proofs are based on various estimates, monotonicity and fixed-point arguments for history-dependent operators. Our abstract results are useful in the study of various mathematical models of contact. To provide an example, we consider a boundary value problem which describes the equilibrium of a viscoelastic body in contact with an elastic-rigid foundation. We list the assumptions on the data and derive both the primal and the dual variational formulation of the problem. Then, we state and prove existence, uniqueness and convergence results. We also provide the link between the two formulations, together with their mechanical interpretation.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3