Characterization of MCPA resistance in Palmer amaranth (Amaranthus palmeri)

Author:

Singh Rishabh,Tardif François J.,Jugulam MithilaORCID

Abstract

AbstractPhenoxy herbicides (2,4-D and MCPA) are widely used to manage broadleaf weeds including Palmer amaranth (Amaranthus palmeri S. Watson), one of the most troublesome weeds in U.S. cropping systems. Previously, we documented resistance to 2,4-D and MCPA in an A. palmeri population (KCTR) from Kansas. Our recent research suggested rapid metabolism of 2,4-D bestows resistance in KCTR A. palmeri; nonetheless, the mechanism of MCPA resistance in this population is still unknown. The objectives of this research were to (1) evaluate the level of resistance to MCPA in KCTR compared with two known susceptible populations of A. palmeri, MSS and KSS; (2) study the absorption and translocation of [14C]MCPA in KCTR and MSS plants: (3) investigate the metabolic profile of [14C]MCPA in KCTR and MSS and compare those with MCPA-tolerant wheat (Triticum aestivum L.) plants; and (4) assess the possible role of cytochrome P450 enzymes (P450s) in MCPA metabolism. Experiments were conducted to assess the level of resistance in KCTR. Using [14C]MCPA, the absorption, translocation, and metabolic profiles were assessed in A. palmeri. Involvement of P450s was confirmed using malathion, a known P450 inhibitor. Regression analyses indicate that KCTR population exhibits an $\sim $ 3-fold resistance to MCPA. No difference in absorption of [14C]MCPA was found between MSS and KCTR. However, the KCTR plants translocated less [14C]MCPA at 48 h after treatment (HAT) and metabolized MCPA more rapidly than MSS plants at 12 and 24 HAT. MCPA resistance in KCTR was reversed upon treatment with malathion, indicating the involvement of P450s in metabolism of this herbicide. This is the first report of characterization of MCPA resistance in A. palmeri.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3