Speckle v Non-Redundant Masking

Author:

Haniff C.A.

Abstract

Unlike their radio counterparts, optical astronomers have paid relatively little attention to the role of the aperture function when designing their high resolution imaging experiments. This is despite the fact that it can be easily modified with the use of a suitable pupil plane mask. While the defining characteristics of the two most favoured pupil configurations have never been in doubt – negligible atmospheric noise in the case of a non-redundant configuration of small holes and high photon rates for a filled pupil – the relative merits of these two choices in terms of imaging performance in the presence of turbulence appear not to have been carefully investigated until very recently.Most existing comparisons of fully-filled aperture (FFA) and non-redundant mask (NRM) based imaging strategies appear to have ignored a number of fundamental and practical difficulties that are often encountered in practice. In the intermediate regime, between very high and very low light levels, that characterizes most astrophysical applications hybrid imaging schemes seem most profitable. These utilize partially-redundant pupil geometries that combine the advantages of redundancy at low light levels without incurring the penalties associated with fully redundant beam recombination. Such pupil geometries are also useful in reducing the level of systematic effects that often plague speckle imaging experiments.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3