Gametocyte sex ratios as indirect measures of outcrossing rates in malaria

Author:

Read A. F.,Narara A.,Nee S.,Keymer A. E.,Day K. P.

Abstract

The frequency of recombination between unlike genotypes is central to understanding the generation of genetic diversity in natural populations of malaria. Here we suggest a way of investigating the problem which could complement conventional biochemical approaches to the population genetics of malaria. Sex allocation theory is one of the most successful areas of evolutionary biology. A well-supported prediction is that progressively less female-biased sex ratios are favoured with more outcrossing; equal numbers of males and females being evolutionarily stable in randomly mating outbred populations. We present a simple game theory model to support the idea that outcrossing rates in malaria will be correlated with the sex ratio of gametocytes in the peripheral blood of vertebrate hosts. Blood films from epidemiological surveys and culture-adapted isolates from Madang Province, Papua New Guinea, were used to estimate average gametocyte sex ratio of Plasmodium falciparum in the area. The geometric mean proportion of males in the population was 0.18 (95% confidence limits: 0.15–0.22). From our model, we estimate that, on average, 36% of zygotes are the result of outcrossing. This estimate assumes that most microgametes released following exflagellation are capable of fertilization. If, on average, fewer than about 70% of microgametes are capable of fertilization (as is the case in at least one other species of Plasmodium), the observed sex ratio would be consistent with between zero and 36% of zygotes being the result of outcrossing. These estimates suggest that there is usually a numerically dominant genotype in the gametocyte population in a blood meal, and that a considerable amount of selfing is occurring in P. falciparum populations in the Madang region, even though it is an area of intense year-round transmission.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference41 articles.

1. Pickering J. (1980). Sex ratio, social behaviour and ecology in Polistes (Hymenoptera, Vespidae), Pachysomoides (Hymenoptera, Ichneumonidae) and Plasmodium (Protozoa, Haemosporidia). Ph.D. thesis, Harvard University.

2. Sex ratio under the haystack model

3. Evolution and the Theory of Games

4. Population genetics and dynamics ofPlasmodium falciparum: an ecological view

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3