Analytical Multimode Scanning and Transmission Electron Imaging and Tomography of Multiscale Structural Architectures of Sulfur Copolymer-Based Composite Cathodes for Next-Generation High-Energy Density Li–S Batteries

Author:

Oleshko Vladimir P.,Herzing Andrew A.,Soles Christopher L.,Griebel Jared J.,Chung Woo J.,Simmonds Adam G.,Pyun Jeffrey

Abstract

AbstractPoly[sulfur-random-(1,3-diisopropenylbenzene)] copolymers synthesized via inverse vulcanization represent an emerging class of electrochemically active polymers recently used in cathodes for Li–S batteries, capable of realizing enhanced capacity retention (1,005 mAh/g at 100 cycles) and lifetimes of over 500 cycles. The composite cathodes are organized in complex hierarchical three-dimensional (3D) architectures, which contain several components and are challenging to understand and characterize using any single technique. Here, multimode analytical scanning and transmission electron microscopies and energy-dispersive X-ray/electron energy-loss spectroscopies coupled with multivariate statistical analysis and tomography were applied to explore origins of the cathode-enhanced capacity retention. The surface topography, morphology, bonding, and compositions of the cathodes created by combining sulfur copolymers with varying 1,3-diisopropenylbenzene content and conductive carbons have been investigated at multiple scales in relation to the electrochemical performance and physico-mechanical stability. We demonstrate that replacing the elemental sulfur with organosulfur copolymers improves the compositional homogeneity and compatibility between carbons and sulfur-containing domains down to sub-5 nm length scales resulting in (a) intimate wetting of nanocarbons by the copolymers at interfaces; (b) the creation of 3D percolation networks of conductive pathways involving graphitic-like outer shells of aggregated carbons; (c) concomitant improvements in the stability with preserved meso- and nanoscale porosities required for efficient charge transport.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference96 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3