Vaccine development for protecting swine against influenza virus

Author:

Chen Qi,Madson Darin,Miller Cathy L.,Harris D.L. Hank

Abstract

AbstractInfluenza virus infects a wide variety of species including humans, pigs, horses, sea mammals and birds. Weight loss caused by influenza infection and/or co-infection with other infectious agents results in significant financial loss in swine herds. The emergence of pandemic H1N1 (A/CA/04/2009/H1N1) and H3N2 variant (H3N2v) viruses, which cause disease in both humans and livestock constitutes a concerning public health threat. Influenza virus contains eight single-stranded, negative-sense RNA genome segments. This genetic structure allows the virus to evolve rapidly by antigenic drift and shift. Antigen-specific antibodies induced by current vaccines provide limited cross protection to heterologous challenge. In pigs, this presents a major obstacle for vaccine development. Different strategies are under development to produce vaccines that provide better cross-protection for swine. Moreover, overriding interfering maternal antibodies is another goal for influenza vaccines in order to permit effective immunization of piglets at an early age. Herein, we present a review of influenza virus infection in swine, including a discussion of current vaccine approaches and techniques used for novel vaccine development.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3