Molecular detection of Histoplasma capsulatum in organ samples from bats randomly captured in urban areas of Araraquara, São Paulo state, Brazil

Author:

Ruiz-Muñoz Jessica A.,Rodríguez-Arellanes Gabriela,Ramírez José A.,Carreto-Binaghi Laura E.ORCID,Fusco-Almeida Ana M.,Mendes-Giannini Maria J. S.,García-Pérez Blanca E.,Taylor Maria L.ORCID

Abstract

Abstract The mycosis histoplasmosis is also considered a zoonosis that affects humans and other mammalian species worldwide. Among the wild mammals predisposed to be infected with the etiologic agent of histoplasmosis, bats are relevant because they are reservoir of Histoplasma species, and they play a fundamental role in maintaining and spreading fungal propagules in the environments since the infective mycelial phase of Histoplasma grows in their accumulated guano. In this study, we detected the fungal presence in organ samples of bats randomly captured in urban areas of Araraquara City, São Paulo, Brazil. Fungal detection was performed using a nested polymerase chain reaction to amplify a molecular marker (Hcp100) unique to H. capsulatum, which revealed the pathogen presence in organ samples from 15 out of 37 captured bats, indicating 40.5% of infection. Out of 22 Hcp100-amplicons generated, 41% corresponded to lung and trachea samples and 59% to spleen, liver, and kidney samples. Data from these last three organs suggest that bats develop disseminated infections. Considering that infected bats create environments with a high risk of infection, it is important to register the percentage of infected bats living in urban areas to avoid risks of infection to humans, domestic animals, and wildlife.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3