Author:
Daniele S.,Mantzaras J.,Jansohn P.,Denisov A.,Boulouchos K.
Abstract
AbstractExperiments were performed in dump-stabilized axisymmetric flames to assess turbulent flame speeds (${S}_{T} $) and mean flamelets speeds (stretched laminar flame speeds, ${S}_{L, k} $). Fuels with significantly different thermodiffusive properties have been investigated, ranging from pure methane to syngas (${\mathrm{H} }_{2} \text{{\ndash}} \mathrm{CO} $ blends) and pure hydrogen, while the pressure was varied from 0.1 to 1.25 MPa. Flame front corrugation was measured with planar laser-induced fluorescence (PLIF) of the OH radical, while turbulence quantities were determined with particle image velocimetry (PIV). Two different analyses based on mass balance were performed on the acquired flame images. The first method assessed absolute values of turbulent flame speeds and the second method, by means of an improved fractal methodology, provided normalized turbulent flame speeds (${S}_{T} / {S}_{L, k} $). Deduced average Markstein numbers exhibited a strong dependence on pressure and hydrogen content of the reactive mixture. It was shown that preferential-diffusive-thermal (PDT) effects acted primarily on enhancing the stretched laminar flame speeds rather than on increasing the flame front corrugations. Interaction between flame front and turbulent eddies measured by the fractal dimension was shown to correlate with the eddy temporal activity.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献