Abstract
AbstractThis study refers to the article of Chicón, Castellanos & Martion (J. Fluid Mech., vol. 344, 1997, pp. 43–66), who presented a numerical study of electroconvection in a layer of dielectric liquid induced by unipolar injection. An important characteristic of the numerical strategy proposed by Chicón et al. lies in the fact that the Navier–Stokes equations are never solved to obtain the velocity field, which is subsequently needed in the charge density transport equation. Instead, the velocity field is explicitly provided by an expression obtained with some assumptions about the flow structure and related to the electric field (the imposed velocity field approach; IVF). The validity of the above simplification is examined through a direct comparison of the solutions obtained by solving the Navier–Stokes equations (the Navier–Stokes computation approach; NSC). It is clearly demonstrated that, even in the strong injection regime ($C= 10$), the results look very similar for a given range of the mobility parameter $M$; however, in the weak injection regime ($C= 0. 1$), significant discrepancies are observed. The rich flow structures obtained with the NSC approach invalidate the use of the IVF approach in the weak injection regime.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference22 articles.
1. Castellanos A. & Atten P. 1987 Numerical modelling of finite amplitude convection of liquids subjected to unipolar injection. IEEE Trans. Ind. Applics. IA-23, 825–830.
2. Curvature-compensated convective transport: SMART, A new boundedness- preserving transport algorithm
3. Vazquez P. A. & Castellanos A. 2011 Stability analysis of the 3D electroconvective charged flow between parallel plates using the particle-in-cell method. In IEEE International Conference on Dielectric Liquids (ICDL), Throndheim 26th–30th June 2011, pp. 1–4.
4. EHD convection in a dielectric liquid subjected to unipolar injection: Coaxial wire/cylinder geometry
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献