Nonlinear interfacial dynamics in stratified multilayer channel flows

Author:

Papaefthymiou E. S.,Papageorgiou D. T.,Pavliotis G. A.

Abstract

AbstractThe dynamics of viscous immiscible pressure-driven multilayer flows in channels are investigated using a combination of modelling, analysis and numerical computations. More specifically, the particular system of three stratified layers with two internal fluid–fluid interfaces is considered in detail in order to identify the nonlinear mechanisms involved due to multiple fluid surface interactions. The approach adopted is analytical/asymptotic and is valid for interfacial waves that are long compared with the channel height or individual undisturbed liquid layer thicknesses. This leads to a coupled system of fully nonlinear partial differential equations of Benney type that contain a small slenderness parameter that cannot be scaled out of the problem. This system is in turn used to develop a consistent coupled system of weakly nonlinear evolution equations, and it is shown that this is possible only if the underlying base-flow and fluid parameters satisfy certain conditions that enable a synchronous Galilean transformation to be performed at leading order. Two distinct canonical cases (all terms in the equations are of the same order) are identified in the absence and presence of inertia, respectively. The resulting systems incorporate all of the active physical mechanisms at Reynolds numbers that are not large, namely, nonlinearities, inertia-induced instabilities (at non-zero Reynolds number) and surface tension stabilization of sufficiently short waves. The coupled system supports several instabilities that are not found in single long-wave equations including, transitional instabilities due to a change of type of the flux nonlinearity from hyperbolic to elliptic, kinematic instabilities due to the presence of complex eigenvalues in the linearized advection matrix leading to a resonance between the interfaces, and the possibility of long-wave instabilities induced by an interaction between the flux function of the system and the surface tension terms. All of these instabilities are followed into the nonlinear regime by carrying out extensive numerical simulations using spectral methods on periodic domains. It is established that instabilities leading to coherent structures in the form of nonlinear travelling waves are possible even at zero Reynolds number, in contrast to single interface (two-layer) systems; in addition, even in parameter regimes where the flow is linearly stable, the coupling of the flux functions and their hyperbolic–elliptic transitions lead to coherent structures for initial disturbances above a threshold value. When inertia is present an additional short-wave instability enters and the systems become general coupled Kuramoto–Sivashinsky-type equations. Extensive numerical experiments indicate a rich landscape of dynamical behaviour including nonlinear travelling waves, time-periodic travelling states and chaotic dynamics. It is also established that it is possible to regularize the chaotic dynamics into travelling wave pulses by enhancing the inertialess instabilities through the advective terms. Such phenomena may be of importance in mixing, mass and heat-transfer applications.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3