Morwell Coal Mine Fire as a Cascading Disaster: A Case Study

Author:

McArdle Dudley,Spencer Caroline,Archer Frank

Abstract

Introduction:Despite the influential Hyogo and Sendai Frameworks, risk remains poorly understood in the emergency preparedness sector. Hazard assessment and risk management are usually considered before events. An alternative view considers risk as a cascade of potential consequences throughout an event. The 2014 fire in the Victorian rural community of Morwell included a three-phased event: a small bush fire, from which embers ignited a persistent fire in a disused open cut brown coal mine fire. The consequent air pollution precipitated a public health emergency in the nearby community of 15,000 people.Aim:To examine this event as a case study to investigate concordance with accepted definitions and key elements of a cascading event.Methods:Selected literature informed a risk cascade definition and model as a framework to examine the key post-event public inquiries available in the public domain.Results:Informed by a Conceptual Framework for a Hazard Evolving into a Disaster (Birnbaum et al., 2015), Wong and colleagues promote a Core Structure of a Comprehensive Framework for Disaster Evaluation Typologies (Wong, 2017). This Core Structure provided an adequate model to examine the sequence of events in the Morwell event. Definitions of cascading effects is more complex (Zuccaro et al., 2018). Our analysis of the Morwell event used the authoritative definition of cascading disasters published by Pescaroli and Alexander (2015). Using this definition, the Morwell event increased in progression over time and generated unexpected secondary events of strong impact. The secondary events could be distinguished from the original source of disaster, and demonstrated failures of physical structures as well as inadequacy of disaster mitigation strategies, while highlighting unresolved vulnerabilities in human society.Discussion:The Morwell coal mine fire of 2014 reflects the key criteria of a cascading disaster and provides understandings to mitigate the consequences of similar events in the future.

Publisher

Cambridge University Press (CUP)

Subject

Emergency Nursing,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3