Author:
Bryce Casey C.,Horneck Gerda,Rabbow Elke,Edwards Howell G. M.,Cockell Charles S.
Abstract
AbstractOn Earth, microorganisms living under intense ultraviolet (UV) radiation stress can adopt endolithic lifestyles, growing within cracks and pore spaces in rocks. Intense UV irradiation encountered by microbes leads to death and significant damage to biomolecules, which also severely diminishes the likelihood of detecting signatures of life. Here we show that porous rocks shocked by asteroid or comet impacts provide protection for phototrophs and their biomolecules during 22 months of UV radiation exposure outside the International Space Station. The UV spectrum used approximated the high-UV flux on the surface of planets lacking ozone shields such as the early Earth. These data provide a demonstration that endolithic habitats can provide a refugium from the worst-case UV radiation environments on young planets and an empirical refutation of the idea that early intense UV radiation fluxes would have prevented phototrophs without the ability to form microbial mats or produce UV protective pigments from colonizing the surface of early landmasses.
Publisher
Cambridge University Press (CUP)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献