Parametric forcing approach to rough-wall turbulent channel flow

Author:

Busse A.,Sandham N. D.

Abstract

AbstractThe effects of rough surfaces on turbulent channel flow are modelled by an extra force term in the Navier–Stokes equations. This force term contains two parameters, related to the density and the height of the roughness elements, and a shape function, which regulates the influence of the force term with respect to the distance from the channel wall. This permits a more flexible specification of a rough surface than a single parameter such as the equivalent sand grain roughness. The effects of the roughness force term on turbulent channel flow have been investigated for a large number of parameter combinations and several shape functions by direct numerical simulations. It is possible to cover the full spectrum of rough flows ranging from hydraulically smooth through transitionally rough to fully rough cases. By using different parameter combinations and shape functions, it is possible to match the effects of different types of rough surfaces. Mean flow and standard turbulence statistics have been used to compare the results to recent experimental and numerical studies and a good qualitative agreement has been found. Outer scaling is preserved for the streamwise velocity for both the mean profile as well as its mean square fluctuations in all but extremely rough cases. The structure of the turbulent flow shows a trend towards more isotropic turbulent states within the roughness layer. In extremely rough cases, spanwise structures emerge near the wall and the turbulent state resembles a mixing layer. A direct comparison with the study of Ashrafian, Andersson & Manhart (Intl J. Heat Fluid Flow, vol. 25, 2004, pp. 373–383) shows a good quantitative agreement of the mean flow and Reynolds stresses everywhere except in the immediate vicinity of the rough wall. The proposed roughness force term may be of benefit as a wall model for direct and large-eddy numerical simulations in cases where the exact details of the flow over a rough wall can be neglected.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3