Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow

Author:

Bourguet Rémi,Karniadakis George Em,Triantafyllou Michael S.

Abstract

AbstractA slender flexible body immersed in sheared cross-flow may exhibit vortex-induced vibrations (VIVs) involving a wide range of excited frequencies and structural wavenumbers. The mechanisms of broadband VIVs of a cylindrical tensioned beam of length-to-diameter aspect ratio 200 placed in shear flow, with an exponentially varying profile along the span, are investigated by means of direct numerical simulation. The Reynolds number is equal to 330 based on the maximum velocity, for comparison with previous work on narrowband vibrations in linear shear flow. The flow is found to excite the structure at a number of different locations under a condition of wake–body synchronization, or lock-in. Broadband responses are associated with a distributed occurrence of the lock-in condition along the span, as opposed to the localized lock-in regions limited to the high inflow velocity zone, reported for narrowband vibrations in sheared current. Despite the instantaneously multi-frequency nature of broadband responses, the lock-in phenomenon remains a locally mono-frequency event, since the vortex formation is generally synchronized with a single vibration frequency at a given location. The spanwise distribution of the excitation zones induces travelling structural waves moving in both directions; this contrasts with the narrowband case where the direction of propagation toward decreasing inflow velocity is preferred. A generalization of the mechanism of phase-locking between the in-line and cross-flow responses is proposed for broadband VIVs under the lock-in condition. A spanwise drift of the in-line/cross-flow phase difference is identified for the high-wavenumber vibration components; this drift is related to the strong travelling wave character of the corresponding structural waves.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3