Sunset similarity solution for a receding hydraulic fracture

Author:

Peirce AnthonyORCID,Detournay EmmanuelORCID

Abstract

This paper derives approximate ‘sunset’ similarity solutions for receding plane strain and radially symmetric hydraulic fractures in permeable elastic media close to the point of closure. Local analysis is used to show that a receding hydraulic fracture has a linear aperture asymptote$\hat {w}\sim \hat {s}$in the fracture tip, where$\hat {s}$is the distance from the fracture front. Due to the regularity of the linear asymptote, it is possible to determine similarity solutions in the form of power series expansions, which, for integers$N\ge 2$and values of the radius decay exponent$\gamma =1/N$, can be shown to terminate to yield polynomial solutions for the fracture aperture of degree$N$. Of this countable infinity of polynomial solutions, the final aperture profile as the fracture approaches closure is associated with the second-degree polynomial with$\gamma =1/2$called the sunset solution. For the reverse time$t^{\prime }$measured from closure, the sunset solution is characterized by$w\sim t^{\prime }$and$R\sim t^{\prime 1/2}$. Of all the admissible polynomial similarity solutions, the sunset solution is shown to form an attractor, as$t^{\prime }\rightarrow 0$, for receding hydraulic fractures associated with a wide variety of points in parametric space. Using the sunset solution, it is possible to estimate the duration of recession, assuming that the fracture aperture and radius at the start of recession are given, and determine how it scales with a dimensionless shut-in parameter. As the fracture approaches closure, the term responsible for coupling the elastic force balance and fluid conservation becomes subdominant to the other terms in the lubrication equation, which reduces to a local kinematic relation between the decaying fracture aperture and the leak-off velocity. This fundamental decoupling of dynamics from kinematics results in the sunset solution being dependent on only a single material parameter – namely the leak-off coefficient. This isolation of the leak-off coefficient by the sunset solution opens the possibility to determine this parameter from laboratory or field measurements.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3