Abstract
This article presents a data-driven model based on modal decomposition, applied to approximate the low-order statistics of the spatially averaged wall-shear stress in a turbulent channel flow over a porous wall with two anisotropic permeabilities, producing drag increase or reduction when compared with the case of an isotropic porous wall. The model is comparable to a neural network architecture using a linear map to a classification. To create this model, we use high-order dynamic mode decomposition (DMD) to identify the structures describing the main flow dynamics, and then test different linear combinations of these modes to estimate the time evolution of the stress at the porous interface. The coefficients of the model are obtained by training the model against the results of direct numerical simulations over different time intervals. Depending on the number and the way of combining the DMD modes, the reduced-order models presented can reconstruct the wall-shear stress with relative error smaller than 0.01 % and reproduce its statistical variations for at least 1500 time units with relative error in the standard deviation or the mean smaller than 5 %. The model has also been tested to approximate the statistics of the wall-shear stress over the whole wall, showing that the regeneration of the flow structures can be reproduced by the nonlinear interaction of modes. Finally, considering the DMD modes as communities in a neural network, we examine the influence of the mode-to-mode interaction on the nonlinear flow dynamics, which explains the performance of the different models.
Funder
Vetenskapsrådet
Ministerio de Ciencia e Innovación
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献