A data-driven model based on modal decomposition: application to the turbulent channel flow over an anisotropic porous wall

Author:

Le Clainche S.ORCID,Rosti M.E.ORCID,Brandt L.ORCID

Abstract

This article presents a data-driven model based on modal decomposition, applied to approximate the low-order statistics of the spatially averaged wall-shear stress in a turbulent channel flow over a porous wall with two anisotropic permeabilities, producing drag increase or reduction when compared with the case of an isotropic porous wall. The model is comparable to a neural network architecture using a linear map to a classification. To create this model, we use high-order dynamic mode decomposition (DMD) to identify the structures describing the main flow dynamics, and then test different linear combinations of these modes to estimate the time evolution of the stress at the porous interface. The coefficients of the model are obtained by training the model against the results of direct numerical simulations over different time intervals. Depending on the number and the way of combining the DMD modes, the reduced-order models presented can reconstruct the wall-shear stress with relative error smaller than 0.01 % and reproduce its statistical variations for at least 1500 time units with relative error in the standard deviation or the mean smaller than 5 %. The model has also been tested to approximate the statistics of the wall-shear stress over the whole wall, showing that the regeneration of the flow structures can be reproduced by the nonlinear interaction of modes. Finally, considering the DMD modes as communities in a neural network, we examine the influence of the mode-to-mode interaction on the nonlinear flow dynamics, which explains the performance of the different models.

Funder

Vetenskapsrådet

Ministerio de Ciencia e Innovación

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3