Ice shelf history determined from deformation styles in surface debris

Author:

Glasser Neil F.,Holt Tom,Fleming Ed,Stevenson Carl

Abstract

AbstractThis paper presents InSAR-derived ice shelf velocities and observations of surface debris deformation on the McMurdo Ice Shelf (MIS). Ice shelf velocities show that the MIS has a low surface velocity, with debris-laden parts of the ice shelf in the area known as the ‘swirls’ averaging speeds of c. 3 m a-1 increasing to c. 16 m a-1 at the ice front. Analysis of the fold patterns within moraine ridges on the ice surface reveals a deformational history inconsistent with the present velocity measurements. Polyphase, isoclinal folding within moraine ridges at the surface are interpreted to have formed through intense deformation by past ice flow in a NNW orientation. The velocities and styles of deformation indicate that the majority of debris on the ice shelf was originally transported into the area by a large and dynamic ice sheet/ice shelf system entirely different to that of the present configuration. Although the age of this event is unknown, it is possible that this debris has been exposed on the surface of the ice shelf since the last glacial maximum.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3