Effect of dicamba rate and application parameters on protoporphyrinogen oxidase inhibitor-resistant and -susceptible Palmer amaranth (Amaranthus palmeri) control

Author:

Coffman WyattORCID,Barber Tom,Norsworthy Jason K.,Kruger Greg R.

Abstract

AbstractThroughout eastern Arkansas, Palmer amaranth resistant to protoporphyrinogen oxidase (PPO)-inhibiting herbicides (Group 14 herbicides) has become widespread. Most PPO-resistant Palmer amaranth biotypes possess a target-site mutation, but a metabolic resistance mechanism to fomesafen (Group 14) has also been identified. Once metabolic resistance manifests, plants may also be tolerant to other herbicides and sites of action. To evaluate whether varying spray parameters affected control of PPO-resistant Palmer amaranth in dicamba-tolerant crops, field trials were conducted in 2017 and 2018 at the Lon Mann Cotton Research Station near Marianna, AR, and on-farm in Marion, AR. The experiment included split plot factors of dicamba rate, nozzle type, and carrier volume, with a whole plot factor of population. Dicamba was applied at 560 or 1120 g ae ha−1 through 110015 TTI or AirMix nozzles at 70 or 140 L ha−1 to PPO-resistant or PPO-susceptible Palmer amaranth. Palmer amaranth control 14 d after treatment (DAT) was influenced by an interaction between population and carrier volume. PPO-resistant Palmer amaranth control 14 DAT was 81% regardless of carrier volume, compared with 90% and 95% control at 70 and 140 L ha−1, respectively, of the PPO-susceptible population. An interaction between nozzle type and carrier volume influenced Palmer amaranth control 21 DAT, whereas AirMix nozzles at 140 L ha−1 controlled Palmer amaranth at a greater level (94%) than any other nozzle and carrier volume combination (≤90%). An interaction between population and dicamba rate influenced the relative density of Palmer amaranth 21 DAT. PPO-resistant Palmer amaranth density was less affected by dicamba at either rate than PPO-susceptible Palmer amaranth, relative to the nontreated check. Results concur with those of other research that suggest PPO-resistant Palmer amaranth is harder to control with dicamba. Otherwise, increasing carrier volume affected overall Palmer amaranth control to a greater degree than any other factor.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference29 articles.

1. Characterization of the Spray Droplet Spectra and Patterns of Four Venturi-Type Drift Reduction Nozzles

2. Performance of Postemergence Herbicides Applied at Different Carrier Volume Rates

3. Daggupati, NP (2007) Assessment of the varitarget nozzle for variable rate application of liquid crop protection products. MS thesis. Manhattan, KS: Kansas State University. 94 p

4. Steckel, LE (2018) Controlling multiple-resistant Palmer amaranth. http://news.utcrops.com/2018/03/controlling-multiple-resistant-palmer-amaranth/. Accessed: December 16, 2018

5. Anonymous (2018b) Xtendimax™ application requirements—nozzles. http://www.xtendimaxapplicationrequirements.com/Pages/nozzles.aspx. Accessed: January 28, 2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3