The critical mass phenomenon in vortex-induced vibration at low

Author:

Navrose ,Mittal SanjayORCID

Abstract

Vortex-induced vibration of a circular cylinder with low mass ratio ($0.05\leqslant m^{\ast }\leqslant 10.0$) is investigated, via a stabilized space–time finite element formulation, in the laminar flow regime where $m^{\ast }$ is defined as the ratio of the mass of the oscillating structure to the mass of the fluid displaced by it. Computations are carried out over a wide range of reduced speed, $U^{\ast }$, which is defined as $U/f_{N}D$, where $U$ is the free-stream speed, $f_{N}$ the natural frequency of the spring mass system in vacuum and $D$ the diameter of the cylinder. In particular, the situation where the lock-in regime extends up to infinite reduced speed is explored. Studies at large $Re$, in the past, have shown that the normalized amplitude of cylinder oscillation at infinite reduced speed, $A_{\infty }^{\ast }$, exhibits a sharp increase when $m^{\ast }$ is reduced below the critical mass ratio ($m_{crit}^{\ast }$). This jump signifies a shift from desynchronized response to lock-in state. In this work it is shown that in the laminar regime, a jump in $A_{\infty }^{\ast }$ occurs only beyond a certain $Re$ ($=Re_{j}\sim 108$). For $Re<Re_{j}$, the response increases smoothly with decrease in $m^{\ast }$ with no discernible jump. In this situation, therefore, the identification of $m_{crit}^{\ast }$ based on jump in response at $U^{\ast }=\infty$ is not possible. The difference in the $A^{\ast }-m^{\ast }$ variation on the two sides of $Re=Re_{j}$, is attributed to the difference in the transition between the lower branch of cylinder response and desynchronization regime. This transition is brought out more clearly by plotting $A^{\ast }$ with $f_{v_{o}}/f$, where $f_{v_{o}}$ is the vortex shedding frequency for the flow past a stationary cylinder and $f$ is the cylinder vibration frequency. In the $A^{\ast }-f_{v_{o}}/f$ plane, the response data as well as other quantities related to free vibrations, for different $m^{\ast }$, collapse on a curve. Unlike at high $Re$, the collapsed curves show a dependence on $Re$ in the laminar regime. The transition between the lock-in and desynchronized state, as seen from the collapsed curves, is qualitatively different for $Re$ on either side of $Re_{j}$. The collapsed curves, at a certain $Re$, are utilized to estimate $A^{\ast }$ for the limiting case of $(U^{\ast },m^{\ast })=(\infty ,0)$. Interestingly, unlike at large $Re$, this limit value is found to be lower than the peak amplitude of cylinder vibration at a given $Re$. Hysteresis in the cylinder response, near the higher-$U^{\ast }$ end of the lock-in regime, is explored. It is observed that the range of $U^{\ast }$ with hysteretic response increases with decrease in $m^{\ast }$. Interestingly, for a certain range of $m^{\ast }$, the response is hysteretic from a finite $U^{\ast }$ up to $U^{\ast }=\infty$. We refer to this phenomenon as hysteresis forever. It occurs because of the existence of multiple response states of the system at $U^{\ast }=\infty$, for a certain range of $m^{\ast }$. The study brings out the significant differences in the response of the fluid–structure system associated with the critical mass phenomenon between the low- and high-$Re$ regime.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference34 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3