Abstract
AbstractThe need for innovative solutions to enable aerial platforms to fly faster, higher, and longer continues to remain a primary focus for airframe designers. This paper outlines work undertaken to apply a morphing wing warping technology onto a generic Unmanned Aerial Vehicle to deliver enhanced flight performance, efficiency and control capabilities. The prototype employs wings of novel construction which provide both near resistance-free compliance in twist as well as adequate structural stiffness to resist applied loads; all while preserving an aerodynamically smooth surface. Used in combination with developed and integrated closed-loop feedback control architecture, a real-time, non-linear, span-wise wing twist adjustment capability required for optimised flight under differing operating conditions and flight requirements, is demonstrated. Experimental results obtained from a wind tunnel test program show up to a 72% increase in lift to drag ratio under certain conditions compared to a fixed baseline providing some confidence that the combination could be used to realise a step change in flight performance.
Publisher
Cambridge University Press (CUP)
Reference30 articles.
1. Active aeroelastic wing flight research program: technical program and model analytical development;Pendleton;J Aircr,2000
2. [21] Kaygan, E. and Gatto, A. Development of an active morphing wing with novel adaptive skin for enhanced aircraft control and performance, The Greener Aviation Conference, 11–13 October 2016, Brussels, Belgium, https://www.researchgate.net/publication/309727387_Development_of_an_Active_Morphing_Wing_with_Novel_Adaptive_Skin_for_Aircraft_Control_and_Performance
3. [23] https://www.probuild-uk.co.uk/index.php?route=product/product&product_id=5354
4. [13] Scherer, L.B. DARPA/AFRL/NASA smart wing second wind tunnel tests results, SPIE Conference on Industrial and Commercial Applications of Smart Structures Technologies, vol. 3674, pp 41–49, 1999, https://doi.org/10.1117/12.351563.
5. [22] https://www.youtube.com/channel/UcvZxD2gXete5xF7_4gWFvRg
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献