A review of propeller stall flutter

Author:

Higgins R.J.ORCID,Barakos G.N.ORCID,Filippone A.

Abstract

AbstractResearch on propeller performance has been reinvigorated by the development of new classes of vehicles, ranging from electrically powered fixed-wing aircraft, to multi-rotor electrical Vertical Take-off/Landing (eVTOL) vehicles and tilt-rotor aircraft. These types of aircraft utilise a range of modern propellers, often with more advanced planforms and features such as anhedral, and operate in flight envelopes that are outwith the traditional bands of performance. The use of advanced materials (mostly composites), high geometrical sweeps and variable angular velocities are the source of unsteady aerodynamics, that is often coupled with the blade’s structural response. Data from experimental investigations is mostly historic, with the majority of studies conducted before 1960, when aviation shifted rapidly towards jet propulsion. These studies lack in flutter boundary assessment. Modern propellers are likely to be pushed toward their flutter boundaries, but the experimental database published to-date is insufficient to provide flutter boundary assessment. This review examines the value of the available experimental research and the status of the state-of-the-art numerical methods, in order to establish the requirements for modern research on propeller stall flutter.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference86 articles.

1. [38] Smith, A.F. Analysis and test evaluation of the dynamic stability of three advanced turboprop models at zero forward speeds, Contractor Report 175025, National Aeronautics and Space Administration, 1985.

2. [11] Lemnios, A.Z. Aerodynamic damping tests of propeller blade airfoil sections, Technical Report R-0997-1, United Aircraft Corporation Research Department, 1957.

3. [36] Rogallo, V.L. and Yaggy, P.F. A wind-tunnel investigation of the stall-flutter characteristics of a supersonic-type propeller at positive and negative thrust, Memorandum 3-9-59A, National Aeronautics and Space Administration, 1959.

4. Classical flutter stability of swept propellers

5. [40] Smith, A.F. Analysis and test evaluation of the dynamic response and stability of three advanced turboprop models at low forward speeds, Contractor Report 175026, National Aeronautics and Space Administration, 1985.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3