Braess's paradox and power-law nonlinearities in networks

Author:

Calvert Bruce,Keady Grant

Abstract

AbstractWe study flows in physical networks with a potential function defined over the nodes and a flow defined over the arcs. The networks have the further property that the flow on an arc a is a given increasing function of the difference in potential between its initial and terminal node. An example is the equilibrium flow in water-supply pipe networks where the potential is the head and the Hazen-Williams rule gives the flow as a numerical factor ka times the head difference to a power s > 0 (and s ≅ 0.54). In the pipe-network problem with Hazen-Williams nonlinearities, having the same s > 0 on each arc, given the consumptions and supplies, the power usage is a decreasing function of the conductivity factors ka. There is also a converse to this. Approximately stated, it is: if every relationship between flow and head difference is not a power law, with the same s on each arc, given at least 6 pipes, one can arrange (lengths of) them so that Braess's paradox occurs, i.e. one can increase the conductivity of an individual pipe yet require more power to maintain the same consumptions.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3