A method for calculating the population/yield relations of groundnut (Arachis hypogaea) in semi-arid climates

Author:

Azam-Ali S. N.,Nageswara Rao R. C.,Craigon J.,Wadia K. D. R.,Williams J. H.

Abstract

SUMMARYBetween 1980 and 1986, six field experiments were conducted to investigate the relations between planting density, total dry matter and pod yield of groundnut (Arachis hypogaea L. cv. TMV2) grown at different levels of irrigation and rainfall at two sites in central India. In general, the relationship between total dry matter and planting density for most treatments was well described by the function:where W is the crop dry weight per unit ground area, wm is the maximum weight per plant, Wm is the maximum crop weight per unit ground area and P is the plant population. Because the harvest index, h, was constant for each treatment irrespective of plant population, a similar equation described the relationship between pod yield and planting density. When nine of the eleven treatments planted in a square (i.e. 1:1) arrangement were compared, the asymptotic value Wm varied between treatments depending on available soil water and atmospheric demand. To quantify the effects of plant and environmental factors on crop productivity, a ‘transpiration equivalent’ (ωw; (g/kg)/kPa), i.e. the product of the dry matter/water ratio and mean seasonal saturation deficit D, was used as a crop constant to calculate productivity at each site or season from a knowledge of seasonal rainfall and/or irrigation and soil water-holding capacity. Thus, total crop productivity, W'8, was calculated using the equation W'8 = ωwS/D where S (mm) is a soil supply term dependent on soil water-holding capacity and monthly values of rainfall and/or irrigation. When values for Wm and W'8 were plotted against each other, a linear regression was obtained with a slope = 1·02 (R2 = 0·78). The mean harvest index of 0·38 was used to predict pod yield from a knowledge of W'8. It was concluded that of all the climatic, soil and management factors that influence crop growth in semi-arid situations, it is the interaction between the supply of and demand for water that ultimately determines total productivity, pod yield and optimum plant population.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference16 articles.

1. Canopy structure, light interception, and yield and market quality of peanut genotypes as influenced by planting pattern and planting date

2. The Physiological Basis for Yield Differences between Four Genotypes of Groundnut (Arachis Hypogaea) in Response to Drought. I. Dry Matter Production and Water Use

3. Azam-Ali S. N. , Crout N. M. J. & Bradley R. G. (1993). Perspectives in modelling resource capture by crops. In Resource Capture by Crops, Proceedings of the University of Nottingham 52nd Easter School, 30 March to 2 April, 1992 (Eds Monteith J. L. , Scott R. K. & Unsworth M. H. ).

4. How do crops manipulate water supply and demand?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3