Effect of gravity settling on the onset of thermal convection in a nanofluid-saturated porous medium layer

Author:

Ruo An-ChengORCID,Chang Min-HsingORCID

Abstract

The onset of convection in a horizontal porous medium layer saturated with a nanofluid and heated from below is investigated via linear stability analysis and numerical simulation. The Darcy–Buongiorno model is used to describe the convective transport behaviour of the nanofluid and the settling effect of nanoparticles due to gravity is considered in addition to thermophoresis and Brownian diffusion. The linear stability analysis shows that the gravity settling is a substantial stabilizing mechanism restraining the destabilizing factors such as thermal buoyancy and thermophoresis. The stability threshold is determined by the relative strength of thermophoresis to gravity settling. It is found that the system is destabilized when the thermophoretic mobility prevails. As the nanoparticle size increases, the gravity settling effect is promoted and makes the system more stable. In particular, the onset of instability is dominated by the oscillatory mode once the nanoparticle concentration is in a stably stratified profile across the porous layer. When the Rayleigh–Darcy number $Ra_D$ exceeds the critical value, the spectrum of the growth rates of the unstable modes rises with increasing $Ra_D$ and $Rn$ (i.e. the concentration Rayleigh number), and eventually the unstable modes in the high-wavenumber region exhibit the same instability. The evolution of the convection is further examined by numerical simulation. The results verify the stability characteristics predicted by linear stability analysis. Moreover, the pattern of fingering convection of the nanofluid concentration is observed once the nanofluid concentration is unstably stratified and the density difference across the porous layer is large enough.

Funder

National Science and Technology Council

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3