Data-driven nonlinear turbulent flow scaling with Buckingham Pi variables

Author:

Fukami KaiORCID,Goto SusumuORCID,Taira KunihikoORCID

Abstract

Nonlinear machine learning for turbulent flows can exhibit robust performance even outside the range of training data. This is achieved when machine-learning models can accommodate scale-invariant characteristics of turbulent flow structures. This study presents a data-driven approach to reveal scale-invariant vortical structures across Reynolds numbers that provide insights for supporting nonlinear machine-learning-based studies of turbulent flows. To uncover conditions for which nonlinear models are likely to perform well, we use a Buckingham-Pi-based sparse nonlinear scaling to find the influence of the Pi groups on the turbulent flow data. We consider nonlinear scalings of the invariants of the velocity gradient tensor for an example of three-dimensional decaying isotropic turbulence. The present scaling not only enables the identification of vortical structures that are interpolatory and extrapolatory for the given flow field data but also captures non-equilibrium effects of the energy cascade. As a demonstration, the present findings are applied to machine-learning-based super-resolution analysis of three-dimensional isotropic turbulence. We show that machine-learning models reconstruct vortical structures well in the interpolatory space with reduced performance in the extrapolatory space revealed by the nonlinearly scaled invariants. The present approach enables us to depart from labelling turbulent flow data with a single parameter of Reynolds number and comprehensively examine the flow field to support training and testing of nonlinear machine-learning techniques.

Funder

Air Force Office of Scientific Research

Publisher

Cambridge University Press (CUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3