The confined stresslet for suspensions in a spherical cavity. Part 1. Traceless elements

Author:

Gonzalez EmmaORCID,Zia Roseanna N.ORCID

Abstract

The confined Stokesian dynamics (CSD) algorithm recently reported equilibrium properties but was missing hydrodynamic functions required for suspension stress and non-equilibrium properties. In this first of a two-part series, we expand the CSD algorithm to model the traceless part of the stress tensor. To obtain quantities needed to solve the integral expressions for the stress, we developed a general method to solve Stokes’ equations in bispherical coordinates. We calculate the traceless stress tensor for arbitrary particle-to-enclosure size ratio. We next compute rheology of a confined suspension by implementing the stresslet hydrodynamic coefficients into CSD, yielding the deviatoric part of the many-body hydrodynamic stresslet. We employed energy methods to relate this stresslet to the high-frequency viscosity of the confined suspension, finding an increase in viscous dissipation with crowding and confinement well beyond the unconfined value. We show that confinement effects on viscosity are dominated by near-field interactions between the particles that reside very near the cavity wall (rather than particle–wall interactions). Surprisingly, this near-field effect is stronger than the viscosity of an unconfined suspension, showing that entropic exclusion driven by the wall sets up many lubrication interactions that then generate strong viscous dissipation. The limiting case of a particle near a flat wall reveals a correction to prior literature. The theory presented in this work can be expanded to study the Brownian contribution to the viscosity of confined suspensions in and away from equilibrium. In part 2, we report the osmotic pressure, via the trace of the stress tensor.

Funder

Stanford Bio-X

Publisher

Cambridge University Press (CUP)

Reference53 articles.

1. Dynamic simulation of hydrodynamically interacting particles

2. The confined generalized Stokes–Einstein relation and its consequence on intracellular two-point microrheology;Aponte-Rivera;J. Colloid Interface Sci.,2021

3. Intracellular transport by active diffusion

4. A slow motion of viscous liquid caused by the rotation of a solid sphere

5. On a form of the solution of Laplace's equation suitable for problems relating to two spheres;Jeffery;Proc. R. Soc. Lond. A,1912

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3