Regular reflection of shock waves in steady flows: viscous and non-equilibrium effects

Author:

Bondar Y.A.ORCID,Shoev G.V.ORCID,Timokhin M.Y.ORCID

Abstract

Numerical analysis of a steady monatomic gas flow about the point of the regular reflection of a strong oblique shock wave from the symmetry plane is conducted with the Navier–Stokes–Fourier (NSF) equations, the regularized Grad 13-moment (R13) equations and the direct simulation Monte Carlo (DSMC) method. In contrast to the inviscid solution to this problem completely defined by the Rankine–Hugoniot (RH) relations, all three models predict a complicated flow structure with strong thermal non-equilibrium and a long wake with flow parameters not predicted by the RH relations. The temperature $T_y$ related to thermal motion of molecules in the direction normal to the symmetry plane has a maximum inside the reflection zone while in a planar shock wave the maximum is observed for the $T_x$ temperature. The R13 equations predict these features much better than the NSF equations and are in good agreement with the benchmark DSMC results. An analysis of the flow with the conservation equations was conducted in order to evaluate the effects of various processes on a fluid element moving along the symmetry plane. In contrast to the shock wave where effects of viscosity and heat conduction are one-dimensional with zeroth net contribution to the fluid-element energy across the shock, the flow across the zone of the shock reflection is dominated by two-dimensional effects with positive net contribution of viscosity and negative contribution of heat conduction to the fluid-element energy. These effects are believed to be the main source of the wake with parameters deviating from the RH values.

Funder

Russian Science Foundation

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3