Wave front perturbation effect on the variability of monopile wave impact loads

Author:

Moalemi ArefhosseinORCID,Bredmose HenrikORCID,Kristiansen TrygveORCID,Pierella FabioORCID

Abstract

The slamming wave force and pressure variabilities for monopile wave impacts are studied as functions of wave breaking shape and transverse perturbations on the breaking wave front. The impacting wave topology is characterized as slosh, flip-through, $\varOmega$ , overturning and fully broken. Fifty test repetitions are conducted for each type of wave impact to assess the variability of force impulse, force and pressure. The results for the unperturbed cases show that the slamming force is highest among the nominal slosh, flip-through and $\varOmega$ tests, and that the slamming force variability is highest for the first two. We demonstrate that the slamming force and pressure variabilities decrease notably after selecting and regrouping the tests by similar crest heights and temporal slopes measured at an upstream wave gauge. The group representing $\varOmega$ wave impacts shows the largest mean slamming force and peak pressure, and their variability is the highest among all groups. Further, the effect of lateral perturbations on the pressure, force and impulse variabilities is investigated. Due to the perturbations, the slamming pressure variability for the wave impacts in which the wave front hits the monopile surface increases significantly. The variability of the slamming force is also increased for the perturbed impacts; however, it is smaller than the slamming pressure variability. The force impulse variability shows a low sensitivity to perturbations, and its magnitude is smaller than that of the force variability. Finally, the slamming pressure using fifteen pressure sensors for five selected events is studied. For these tests, oscillations at frequencies associated with structural or bubble oscillations are seen. Further, the air entertainment is documented through video recordings.

Publisher

Cambridge University Press (CUP)

Reference27 articles.

1. FURTHER EXPERIMENTS ON WAVE PRESSURES.

2. Fox, K.C. 2010 Cluster helps disentangle turbulence in the solar wind. Available at https://www.nasa.gov/topics/solarsystem/sunearthsystem/main/cluster-turbulence.html.

3. Variability of wave impact measurements on vertical breakwaters

4. Gas flow dynamics over a plunging breaking wave prior to impact on a vertical wall

5. The dynamics of thin sheets of fluid II. Waves on fluid sheets;Taylor;Proc. R. Soc. Lond. A,1959

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3