Streamwise ram effect and tip vortex enhance the lift of a butterfly-inspired flapping wing

Author:

Chen YixinORCID,Liu Yi,Wang ShizhaoORCID

Abstract

Although both butterflies and dragonflies are four-winged insects, their wing geometries and kinematics differ significantly. Butterflies have a much narrower gap between their forewing and hindwing than dragonflies. While previous research has extensively investigated the forewing–hindwing interactions in dragonfly flight, this work focuses on their interactions in butterfly flight. The interactions are studied based on numerical simulations of the Navier–Stokes equations around a butterfly-inspired flapping wing with an adjustable slot, representing the narrow gap between the forewing and hindwing. The slot is controlled by a dihedral angle between the forewing and hindwing. The lift coefficients of wings with different slot sizes and locations are investigated in detail. The results show that the forewing–hindwing interactions can significantly enhance the lift if the slot is properly configured. When the slot is configured by elevating the forewing at a 10-degree dihedral angle relative to the hindwing during flapping flight, the wing generates over 20 % more lift than the model without a slot. The streamwise ram effect and tip-vortex capture are shown to be responsible for the lift enhancement by using a lift decomposition formula. The streamwise ram effect reduces the streamwise velocity beneath the forewing, decreasing the negative vortex lift associated with spanwise vorticity. The tip-vortex capture enhances the positive vortex lift associated with streamwise vorticity when the hindwing captures the tip vortex shedding from the forewing.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3