Reynolds number effects in separating and reattaching flows with passive scalar transport

Author:

Cimarelli A.ORCID,Corsini R.ORCID,Stalio E.ORCID

Abstract

A study of the physics of separating and reattaching flows around bodies with sharp edges is reported. Data from direct numerical simulations of the flow around a rectangular cylinder with aspect ratio 5 at different Reynolds numbers are used. The flow is decomposed into multiple interacting flow phenomena such as the laminar boundary layer in the front face, the separated shear layer, the flow impingement at reattachment, the reverse boundary layer within the recirculating bubble and the near- and far-wake flow. A detailed analysis of the physics of these phenomena is provided, including the slow modulation induced by large-scale instabilities related with vortex shedding. The entrainment phenomena acting along the separated shear layer and their unbalance between its inner and outer sides are recognised as fundamental mechanisms determining the tendency of the flow to reattach and the overall fluxes of momentum and heat. The behaviour of entrainment is found to be strictly related with the shear-layer velocity difference that in turn is determined by the behaviour of the reverse boundary layer and by its strength in counteract adverse pressure gradients. The physical understanding of the compound role played by these and all the other mechanisms composing the flow, poses the basis for the formulation of theoretical frameworks able to unify all these interacting phenomena. Finally, the present work provides access to high-fidelity flow statistics of relevance for benchmark activities on bluff bodies with sharp edges.

Funder

Partnership for Advanced Computing in Europe AISBL

Publisher

Cambridge University Press (CUP)

Reference58 articles.

1. Turbulent shear-layer mixing at high Reynolds numbers: effects of inflow conditions

2. Numerical study of transition process in a separated boundary layer on a flat plate with two different leading edges;Yang;WSEAS Trans. Appl. Theor. Mech.,2012

3. Turbulent Flow Around Rectangular Cylinders With Different Streamwise Aspect Ratios

4. Spatial evolution of the turbulent/turbulent interface geometry in a cylinder wake

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3