A combined active control method of restricted nonlinear model and machine learning technology for drag reduction in turbulent channel flow

Author:

Han Bing-Zheng,Huang Wei-XiORCID,Xu Chun-XiaoORCID

Abstract

The practical implementation of machine learning in flow control is limited due to its significant training expenses. In the present study the convolutional neural network (CNN) trained with the data of the restricted nonlinear (RNL) model is used to predict the normal velocity on a detection plane at $y^+=10$ in a turbulent channel flow, and the predicted velocity is used as wall blowing and suction for drag reduction. An active control test is carried out by using the well-trained CNN in direct numerical simulation (DNS). Substantial drag reduction rates up to 19 % and 16 % are obtained based on the spanwise and streamwise wall shear stresses, respectively. Furthermore, we explore the online control of wall turbulence by combining the RNL model with reinforcement learning (RL). The RL is constructed to determine the optimal wall blowing and suction based on its observation of the wall shear stresses without using the label data on the detection plane for training. The controlling and training processes are conducted synchronously in a RNL flow field. The control strategy discovered by RL has similar drag reduction rates with those obtained previously by the established method. Also, the training cost decreases by over thirty times at $Re_{\tau }=950$ compared with the DNS-RL model. The present results provide a perspective that combining the RNL model with machine learning control for drag reduction in wall turbulence can be effective and computationally economical. Also, this approach can be easily extended to flows at higher Reynolds numbers.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3