Effects of dilatation and turbulence on tangential strain rates in premixed hydrogen and iso-octane flames

Author:

Chu HongchaoORCID,Berger LukasORCID,Gauding MichaelORCID,Attili AntonioORCID,Pitsch HeinzORCID

Abstract

The tangential strain rate in premixed flames impacts significantly the flame surface area generation and thus the combustion process. Studies on incompressible isotropic turbulence have revealed that the mean tangential strain rate at material and iso-scalar surfaces is positive and exhibits a universal value when normalized by the Kolmogorov time. This is associated with the preferential alignment of the surface normal with the most compressive principal strain rate. The present study investigates such effects in premixed hydrogen and iso-octane flame kernels using direct numerical simulations. It is shown that the normalized mean tangential strain rate of the investigated flames has a very similar value compared with the incompressible flows. However, in the reaction zone, the flame surface normal aligns preferentially with the most extensive principal strain rate. Furthermore, this alignment depends on the reaction progress variable and the Lewis number, while the tangential strain rate remains independent of these parameters. Such counter-intuitive behaviour is systematically investigated by decomposing the effects of dilatation and residual solenoidal turbulence. It is found that the solenoidal turbulence influences significantly the tangential strain rate. A general effect of turbulence on the tangential strain rate is identified, which is consistent with incompressible flows and independent of the Lewis number and the reaction progress variable. This is a remarkable finding indicating that models of the tangential strain rate developed based on incompressible flows apply also to premixed flames with different Lewis numbers, and, for the modelling, only the solenoidal turbulence should be considered.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3