Lagrangian statistics of concentrated emulsions

Author:

Girotto Ivan,Scagliarini AndreaORCID,Benzi Roberto,Toschi FedericoORCID

Abstract

The dynamics of stabilised concentrated emulsions presents a rich phenomenology including chaotic emulsification, non-Newtonian rheology and ageing dynamics at rest. Macroscopic rheology results from the complex droplet microdynamics and, in turn, droplet dynamics is influenced by macroscopic flows via the competing action of hydrodynamic and interfacial stresses, giving rise to a complex tangle of elastoplastic effects, diffusion, breakups and coalescence events. This tight multiscale coupling, together with the daunting challenge of experimentally investigating droplets under flow, has hindered the understanding of concentrated emulsions dynamics. We present results from three-dimensional numerical simulations of emulsions that resolve the shape and dynamics of individual droplets, along with the macroscopic flows. We investigate droplet dispersion statistics, measuring probability density functions (p.d.f.s) of droplet displacements and velocities, changing the concentration, in the stirred and ageing regimes. We provide the first measurements, in concentrated emulsions, of the relative droplet–droplet separations p.d.f. and of the droplet acceleration p.d.f., which becomes strongly non-Gaussian as the volume fraction is increased above the jamming point. Cooperative effects, arising when droplets are in contact, are argued to be responsible of the anomalous superdiffusive behaviour of the mean square displacement and of the pair separation at long times, in both the stirred and in the ageing regimes. This superdiffusive behaviour is reflected in a non-Gaussian pair separation p.d.f., whose analytical form is investigated, in the ageing regime, by means of theoretical arguments. This work paves the way to developing a connection between Lagrangian dynamics and rheology in concentrated emulsions.

Funder

Partnership for Advanced Computing in Europe AISBL

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3