Design optimization of a CFRP–aluminum joint for a bioengineering application

Author:

Pappas G. A.ORCID,Botsis J.

Abstract

Lightweight design demands and complexity requirements of modern high-end structures in aerospace, automotive, sports and bioengineering can be successfully covered by a combination of fiber reinforced polymers (FRPs) with metallic components. Conventionally, mechanical locking is favored in integrating multi-material parts, avoiding bonded interfaces. The feasibility of a multi-material carbon FRP–aluminum structural component of a robotic exoskeleton, fabricated in a single step with the FRP directly cured on the aluminum domain, was investigated. To conduct the feasibility analysis, pertinent systematic FE modeling involving cohesive contact was employed to optimize the design, while strength and fracture testing were conducted to define the formed interfaces’ resistance. Sandblasting treatment was also investigated and compared with plain surfaces. The results show that the effect of residual stresses due to curing process governs the created joint’s durability. To reduce their effect, the local compliance of the multi-material components was altered by introducing a compliant layer along with modification of the aluminum domains’ local geometry in a manner that does not compromise the overall structural integrity. The interface stresses of the optimized geometry are a few times lower than the ones estimated for the initial design. The methodology adopted herein delivers some guidelines on treating such problems.

Publisher

Cambridge University Press (CUP)

Subject

General Engineering,Visual Arts and Performing Arts,Modelling and Simulation

Reference26 articles.

1. Wright, P. 2001 John Barnard on Gearbox Case Design, 2 September, [Online], Available: http://www.grandprix.com/features/peter-wright/technical-john-barnard-on-gearbox-case-design.html.

2. The Fatigue and Durability Behaviour of Automotive Adhesives. Part II: Failure Mechanisms

3. Growth of thin alumina film on aluminium at room temperature: a kinetic and spectroscopic study by surface plasmon excitation;Dumas;Journal de Physique Colloques,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3