Fuzzy-based Description of Computational Complexity of Central Nervous Systems

Author:

Prokopowicz PiotrORCID,Mikołajewski DariuszORCID,Tyburek KrzysztofORCID,Kotlarz PiotrORCID

Abstract

Computational intelligence algorithms are currently capable of dealing with simple cognitive processes, but still remain inefficient compared with the human brain’s ability to learn from few exemplars or to analyze problems that have not been defined in an explicit manner. Generalization and decision-making processes typically require an uncertainty model that is applied to the decision options while relying on the probability approach. Thus, models of such cognitive functions usually interact with reinforcement-based learning to simplify complex problems. Decision-makers are needed to choose from the decision options that are available, in order to ensure that the decision-makers’ choices are rational. They maximize the subjective overall utility expected, given by the outcomes in different states and weighted with subjective beliefs about the occurrence of those states. Beliefs are captured by probabilities and new information is incorporated using the Bayes’ law. Fuzzy-based models described in this paper propose a different – they may serve as a point of departure for a family of novel methods enabling more effective and neurobiologically reliable brain simulation that is based on fuzzy logic techniques and that turns out to be useful in both basic and applied sciences. The approach presented provides a valuable insight into understanding the aforementioned processes, doing that in a descriptive, fuzzy-based manner, without presenting a complex analysis

Publisher

National Institute of Telecommunications

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3