Effect of Tailored Microstructures in CaO-Added AZ31 Extrusion Material on Tensile, High Cycle Fatigue and Fatigue Crack Propagation Properties

Author:

Kim Young-Kyun,Kim Min-Jong,Hwang Yu-Jin,Kim Shae. K.,Lim Hyun-Kyu,Lee Kee-Ahn

Abstract

The effect of tailored microstructures in 0.5 wt% CaO added AZ31 on tensile, high-cycle fatigue, and fatigue crack growth properties was examined. By adding CaO, the average grain size (AGS) was significantly reduced from 4.25±2.32 μm (conventional AZ31) to 2.42±1.60 μm (CaO-AZ31). The fineprecipitates of CaO-AZ31 were more evenly distributed and their fraction was higher than those of conventional AZ31. The fine-precipitates were identified as Al8Mn4Ca and (Mg, Al)2Ca in CaO-AZ31, meanwhile, were identified as Al8Mn5 and Mg17Al11 in conventional AZ31. The tensile test results showed that the yield strengths of CaO-AZ31 and conventional AZ31 were 238.0 MPa and 206.7 MPa, respectively. The elongation-to-failure also increased when CaO was added. The improved tensile properties of CaO-AZ31 could be explained by grain refinement and precipitation hardening. The high-cycle fatigue limit also increased about 15% with added CaO. The fatigue limits as a function of the tensile strengths of CaO-AZ31 and conventional AZ31 were 0.508 and 0.457, respectively. The origin of the improved fatigue resistance was attributed to inhibition of the formation of DTs, which acted as the fatigue crack source, in CaO-AZ31. In contrast, the fatigue crack growth property did not change when CaO was added. Based on the above findings, the relationships between microstructure, mechanical properties and deformation mechanisms are also discussed.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3