Friction and Wear Behavior of Selective Laser Melted Ti6Al4V-Equine Bone Nanocomposites

Author:

Kim Se-Hee,Bae Su-Hyun,Park Sang-Bae,Seonwoo Hoon,Shin Se-Eun

Abstract

Ti6Al4V is commonly used in implants because of its excellent mechanical properties, corrosion resistance, and biocompatibility. While Hydroxyapatite (HAp) is typically used for strong biological bonding between Ti6Al4V implants and bone tissue, this study takes a different approach by incorporating Equine Bone (EB), which has a chemical structure similar to human bone tissue, as a substitute for HAp. In this study, to develop implant materials with a low elastic modulus, high strength, and excellent wear resistance, Ti6Al4V used in biomedical applications was combined with natural EB. Subsequently, a Ti6Al4V-0.05EB composite was fabricated using ball milling followed by Selective Laser Melting (SLM). SLM can reproduce even the interior of a 3D structure, so various studies are being conducted to apply it as a biomaterial. However, Ti6Al4V alloys produced by SLM are known to have low ductility due to localized heat gradients, rapid solidification, and cooling rates. This reduced ductility can result in decreased formability of biomaterials, and the high elastic modulus may lead to stress shielding phenomena, potentially reducing the lifespan of the biomaterial. To minimize this, a post-heat treatment was applied to the Ti6Al4V-0.05EB composite material manufactured by SLM. Afterwards, the microstructure, mechanical properties, and wear resistance, which are important in biomaterials, were evaluated.

Funder

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3