Spheroidization Heat Treatment Conditions with Data Analysis in Medium Carbon Cr-Mo Steel for Ultra High Strength Cold Heading

Author:

Jo Yong Deok,Lee Hui Ju,Yi Sung,Jang Byoung Lok

Abstract

The degree to which parameters affect the spheroidization heat treatment of steel was calculated by setting the spheroidization heat treatment conditions of Cr-Mo steel and using data analysis such as S/N ratio and ANOVA. After analyzing the transformation temperatures of the steel, Ac1 and Ac3 , using a DSC, the conditions were set accordingly. The surface hardness was measured for the conditions and used as an evaluation index. The correlation was analyzed by comparing the spheroidized volume fraction and the surface hardness, and the Pearson correlation coefficient was -0.88, proving that a correlation existed between the two values. Using S/N ratio and ANOVA, the degree to which each control parameter affects the decrease in the surface hardness was analyzed, qualitatively and quantitatively. For the S/N ratio, priority affecting the surface hardness for each control parameter was analyzed. The 1st heating temperature was found to have a more preferential effect on the surface hardness than the 1st heating time and the 2nd heating temperature. Using ANOVA, the 1st heating temperature was determined to be a very significant factor with the greatest influence, contributing 73.2% to the surface hardness. Intercritical annealing is a suitable spheroidization heat treatment condition, so if the surface hardness of the steel needs to be reduced using Intercritical annealing, the 1st heating temperature and time should be designed as the priority.

Funder

Ministry of Trade, Industry and Energy

Korea Evaluation Institute of Industrial Technology

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3