Monetary incentives and peer referral in promoting secondary distribution of HIV self-testing among men who have sex with men in China: A randomized controlled trial

Author:

Zhou YiORCID,Lu YingORCID,Ni YuxinORCID,Wu DanORCID,He Xi,Ong Jason J.ORCID,Tucker Joseph D.ORCID,Sylvia Sean Y.ORCID,Jing FengshiORCID,Li XiaofengORCID,Huang Shanzi,Shen Guangquan,Xu ChenORCID,Xiong YuanORCID,Sha YongjieORCID,Cheng Mengyuan,Xu JunjieORCID,Jiang HongboORCID,Dai WencanORCID,Huang Liqun,Zou FeiORCID,Wang ChengORCID,Yang Bin,Mei Wenhua,Tang Weiming

Abstract

Background Digital network–based methods may enhance peer distribution of HIV self-testing (HIVST) kits, but interventions that can optimize this approach are needed. We aimed to assess whether monetary incentives and peer referral could improve a secondary distribution program for HIVST among men who have sex with men (MSM) in China. Methods and findings Between October 21, 2019 and September 14, 2020, a 3-arm randomized controlled, single-blinded trial was conducted online among 309 individuals (defined as index participants) who were assigned male at birth, aged 18 years or older, ever had male-to-male sex, willing to order HIVST kits online, and consented to take surveys online. We randomly assigned index participants into one of the 3 arms: (1) standard secondary distribution (control) group (n = 102); (2) secondary distribution with monetary incentives (SD-M) group (n = 103); and (3) secondary distribution with monetary incentives plus peer referral (SD-M-PR) group (n = 104). Index participants in 3 groups were encouraged to order HIVST kits online and distribute to members within their social networks. Members who received kits directly from index participants or through peer referral links from index MSM were defined as alters. Index participants in the 2 intervention groups could receive a fixed incentive ($3 USD) online for the verified test result uploaded to the digital platform by each unique alter. Index participants in the SD-M-PR group could additionally have a personalized peer referral link for alters to order kits online. Both index participants and alters needed to pay a refundable deposit ($15 USD) for ordering a kit. All index participants were assigned an online 3-month follow-up survey after ordering kits. The primary outcomes were the mean number of alters motivated by index participants in each arm and the mean number of newly tested alters motivated by index participants in each arm. These were assessed using zero-inflated negative binomial regression to determine the group differences in the mean number of alters and the mean number of newly tested alters motivated by index participants. Analyses were performed on an intention-to-treat basis. We also conducted an economic evaluation using microcosting from a health provider perspective with a 3-month time horizon. The mean number of unique tested alters motivated by index participants was 0.57 ± 0.96 (mean ± standard deviation [SD]) in the control group, compared with 0.98 ± 1.38 in the SD-M group (mean difference [MD] = 0.41),and 1.78 ± 2.05 in the SD-M-PR group (MD = 1.21). The mean number of newly tested alters motivated by index participants was 0.16 ± 0.39 (mean ± SD) in the control group, compared with 0.41 ± 0.73 in the SD-M group (MD = 0.25) and 0.57 ± 0.91 in the SD-M-PR group (MD = 0.41), respectively. Results indicated that index participants in intervention arms were more likely to motivate unique tested alters (control versus SD-M: incidence rate ratio [IRR = 2.98, 95% CI = 1.82 to 4.89, p-value < 0.001; control versus SD-M-PR: IRR = 3.26, 95% CI = 2.29 to 4.63, p-value < 0.001) and newly tested alters (control versus SD-M: IRR = 4.22, 95% CI = 1.93 to 9.23, p-value < 0.001; control versus SD-M-PR: IRR = 3.49, 95% CI = 1.92 to 6.37, p-value < 0.001) to conduct HIVST. The proportion of newly tested testers among alters was 28% in the control group, 42% in the SD-M group, and 32% in the SD-M-PR group. A total of 18 testers (3 index participants and 15 alters) tested as HIV positive, and the HIV reactive rates for alters were similar between the 3 groups. The total costs were $19,485.97 for 794 testers, including 450 index participants and 344 alter testers. Overall, the average cost per tester was $24.54, and the average cost per alter tester was $56.65. Monetary incentives alone (SD-M group) were more cost-effective than monetary incentives with peer referral (SD-M-PR group) on average in terms of alters tested and newly tested alters, despite SD-M-PR having larger effects. Compared to the control group, the cost for one more alter tester in the SD-M group was $14.90 and $16.61 in the SD-M-PR group. For newly tested alters, the cost of one more alter in the SD-M group was $24.65 and $49.07 in the SD-M-PR group. No study-related adverse events were reported during the study. Limitations include the digital network approach might neglect individuals who lack internet access. Conclusions Monetary incentives alone and the combined intervention of monetary incentives and peer referral can promote the secondary distribution of HIVST among MSM. Monetary incentives can also expand HIV testing by encouraging first-time testing through secondary distribution by MSM. This social network–based digital approach can be expanded to other public health research, especially in the era of the Coronavirus Disease 2019 (COVID-19). Trial registration Chinese Clinical Trial Registry (ChiCTR) ChiCTR1900025433

Funder

National nature science fundation of china

National Key Research and Development Program of China

Academy of Medical Sciences and the Newton Fund

National institute of mental health

National Institutes of Health

Zhuhai Medical and Health Science and Technology Plan Project

Publisher

Public Library of Science (PLoS)

Subject

General Medicine

Reference37 articles.

1. Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study;AB Hogan;Lancet Glob Health,2020

2. UNAIDS. Prevailing against pandemics by putting people at the centre—World AIDS Day report 2020. 2020.

3. UNAIDS. KEY POPULATIONS ATLAS n.d. [cited 2020 Apr 20]. Available from: http://kpatlas.unaids.org/dashboard

4. Maintaining HIV care during the COVID-19 pandemic;H Jiang;Lancet HIV,2020

5. Examining the effects of HIV self-testing compared to standard HIV testing services: a systematic review and meta-analysis;CC Johnson;J Int AIDS Soc,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3