Multi-tissue transcriptomic analysis reveals that L-methionine supplementation maintains the physiological homeostasis of broiler chickens than D-methionine under acute heat stress

Author:

Lee Mingyung,Park Hyesun,Heo Jung Min,Choi Ho Jun,Seo SeongwonORCID

Abstract

The objective of this study was to compare the effects of supplementation with two methionine isoforms, L-methionine (L-Met) or D-methionine (D-Met), on transcriptome expression in broiler chickens under acute heat stress. A total of 240 one-day-old chicks were randomly assigned to one of four treatments in a 2 × 2 factorial arrangement: thermo-neutral vs. acute heat-stress and L-Met vs. D-Met supplementation. On day 14, the heat-stressed group was exposed to 32°C for 5 h, while the others remained at 25°C. Six chicks were randomly selected per treatment and total RNA was isolated from whole blood, ileum, and liver tissues. Two RNA samples from each tissue of each treatment group were randomly selected and pooled in equal amounts. A total of 1.87 billion raw reads obtained from 36 samples (four treatments × three tissues × three composited replicates) were mapped to the reference genome build (Gallus_gallus-5.0) and used to identify differentially expressed genes (DEGs) using DESeq2. Functional enrichment of DEGs was tested using DAVID. Comparing the two isoforms of supplemented methionine, two, three, and ten genes were differentially expressed (> 1 or < -1 log2 fold change) in whole blood, ileum, and liver, respectively. A total of 38, 71, and 16 genes were differentially expressed in response to the interaction between heat stress and Met isoforms in the blood, ileum, and liver, respectively. Three-tissue-specific DEGs were functionally enriched for regulation of cholesterol homeostasis and metabolism, glucose metabolism, and vascular patterning. Chicks fed with L-Met had lower immune (e.g., IL4I1 and SERPINI1) and intestinal angiogenic responses (e.g., FLT1 and FGD5), and stable glucose and lipid metabolism (e.g., PCK1 and LDLR) under heat stress conditions. In conclusion, unlike D-Met, L-Met supplementation seems to help maintain physiological homeostasis and enhances cellular defense systems against external stresses like high environmental temperature.

Funder

CJ Cheiljedang Corp.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3