Context-dependent monoclonal antibodies against protein carbamidomethyl-cysteine

Author:

Cartee Naw May Pearl,Lee Soo Jung,Keep Simon G.,Wang Michael M.ORCID

Abstract

Protein sulfhydryl residues participate in key structural and biochemical functions. Alterations in sulfhydryl status, regulated by either reversible redox reactions or by permanent covalent capping, may be challenging to identify. To advance the detection of protein sulfhydryl groups, we describe the production of new Rabbit monoclonal antibodies that react with carbamidomethyl-cysteine (CAM-cys), a product of iodoacetamide (IAM) labeling of protein sulfhydryl residues. These antibodies bind to proteins labeled with IAM (but not N-ethylmaleimide (NEM) or acrylamide) and identify multiple protein bands when applied to Western blots of cell lysates treated with IAM. The monoclonal antibodies label a subset of CAM-cys modified peptide sequences and purified proteins (human von Willebrand Factor (gene:vWF), Jagged 1 (gene:JAG1), Laminin subunit alpha 2 (gene:LAMA2), Thrombospondin-2 (gene:TSP2), and Collagen IV (gene:COL4)) but do not recognize specific proteins such as Bovine serum albumin (gene:BSA) and human Thrombospondin-1 (gene:TSP1), Biglycan (gene:BGN) and Decorin (gene:DCN). Scanning mutants of the peptide sequence used to generate the CAM-cys antibodies elucidated residues required for context dependent reactivity. In addition to recognition of in vitro labeled proteins, the antibodies were used to identify selected sulfhydryl-containing proteins from living cells that were pulse labeled with IAM. Further development of novel CAM-cys monoclonal antibodies in conjunction with other biochemical tools may complement current methods for sulfhydryl detection within specific proteins. Moreover, CAM-cys reactive reagents may be useful when there is a need to label subpopulations of proteins.

Funder

National Institute of Neurological Disorders and Stroke

U.S. Department of Veterans Affairs

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3