Aging steepens the slope of power spectrum density of 30-minute continuous blood pressure recording in healthy human subjects

Author:

Mano Jumpei,Saku KeitaORCID,Kinoshita Hiroyuki,Mannoji Hiroshi,Kanaya Shigehiko,Sunagawa Kenji

Abstract

Background The increase of blood pressure (BP) variability (BPV) is recognized as an important additional cardiovascular risk factor in both normotensive subjects and hypertensive patients. Aging-induced atherosclerosis and autonomic dysfunction impair the baroreflex and, in turn, augment 24-hour BPV. In small and large animal experiments, impaired baroreflex steepens the slope of the power spectrum density (PSD) of continuous BP in the frequency range of 0.01 to 0.1 Hz. Although the repeated oscillometric BP recording over 24 hours or longer is a prerequisite to quantify BPV in humans, how the very short-term continuous BP recording reflects BPV remains unknown. This study aimed to evaluate the impact of aging on the very short-term (30-min) BPV in healthy human subjects by frequency analysis. Methods We recorded continuous BP tonometrically for 30 min in 56 healthy subjects aged between 28 and 85 years. Considering the frequency-dependence of the baroreflex dynamic function, we estimated the PSD of BP in the frequency range of 0.01 to 0.1 Hz, and compared the characteristics of PSD among four age groups (26–40, 41–55, 56–70 and 71–85 years). Results Aging did not significantly alter mean and standard deviation (SD) of BP among four age groups. PSD was nearly flat around 0.01 Hz and decreased gradually as the frequency increased. The slope of PSD between 0.01 and 0.1 Hz was steeper in older subjects (71 years or older) than in younger subjects (55 years or younger) (p < 0.05). Conclusions Aging steepened the slope of PSD of BP between 0.01 and 0.1 Hz. This phenomenon may partly be related to the deterioration of the baroreflex in older subjects. Our proposed method to evaluate very short-term continuous BP recordings may contribute to the stratification of BPV.

Funder

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

the Research grant from Omron Healthcare Co., Ltd.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3