Feeding selenium-biofortified alfalfa hay during the preconditioning period improves growth, carcass weight, and nasal microbial diversity of beef calves

Author:

Hall Jean A.ORCID,Isaiah Anitha,Bobe Gerd,Estill Charles T.,Bishop-Stewart Janell K.,Davis T. Zane,Suchodolski Jan S.,Pirelli Gene J.

Abstract

We previously reported that feeding Se-biofortified alfalfa hay to weaned beef calves in a preconditioning program decreases morbidity and mortality during the feedlot period. To understand the mode of action by which supranutritional Se supplementation supports calf health, we examined the effect of agronomic Se-biofortification on nasal microbiome and fecal parasites. Recently weaned Angus-cross beef calves (n = 30) were randomly assigned to two groups and fed an alfalfa hay-based diet for 9 weeks in a preconditioning program. Alfalfa hay was harvested from fields fertilized with sodium selenate at a rate of 0 or 90 g Se/ha. Calculated Se intake from dietary sources was 1.09 and 27.45 mg Se/calf per day for calves consuming alfalfa hay with Se concentrations of 0.06 and 3.47 mg Se/kg dry matter, respectively. Feeding Se-biofortified alfalfa hay for 9 weeks was effective at increasing whole-blood Se concentrations (556 ± 11 vs 140 ± 11 ng/mL; P < 0.001) and increasing body weight (PTreatment, = 0.03) in weaned beef calves. Slaughter yield grades were higher for calves that had been fed Se-enriched alfalfa hay during the preconditioning period (PTreatment = 0.008). No significant differences were observed in fecal parasite load, which remained low. The nasal microbiome and microbiota diversity within calves and across calves expanded from weaning (week 0) to the feedlot period (week 12), which was promoted by feeding Se-biofortified alfalfa hay. Especially concerning was the expansion of nasal Mycoplasmataceae in the feedlot, which reached over 50% of the total microbiota in some calves. In conclusion, we identified dietary Se-biofortified alfalfa hay as a potential promoter of nasal microbiome genome and microbiota diversity, which may explain in part high-Se benefits for prevention of bovine respiratory disease complex in beef calves.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3