Informed sequential pooling approach to detect SARS-CoV-2 infection

Author:

Millioni Renato,Mortarino CinziaORCID

Abstract

The alarming spread of the pandemic coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus requires several measures to reduce the risk of contagion. Every successful strategy in controlling the SARS-CoV-2 infection depends on timely diagnosis, which should include testing of asymptomatic carriers. Consequently, increasing the throughput for clinical laboratories for the purposes of conducting large-scale diagnostic testing is urgently needed. Here we support the hypothesis that standard diagnostic protocol for SARS-CoV-2 virus could be conveniently applied to pooled samples obtained from different subjects. We suggest that a two-step sequential pooling procedure could identify positive subjects, ensuring at the same time significant benefits of cost and time. The simulation data presented herein were used to assess the efficiency, in terms of number of required tests, both for random assignment of the subjects to the pools and for situations in which epidemiological and clinical data are used to create "informed" pools. Different scenarios were simulated to measure the effect of different pool sizes and different values for virus frequency. Our results allow for a customization of the pooling strategy according to the specific characteristics of the cohort being tested.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference23 articles.

1. An overview on COVID-19 pandemic: from discovery to treatment;K Panati;Infect Disord Drug Targets,2020

2. Low risk of SARS-CoV-2 transmission by fomites in real-life conditions;MU Mondelli;Lancet Infect Dis,2020

3. Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19);JA Al-Tawfiq;Travel Med Infect Dis,2020

4. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China;D Wang;JAMA,2020

5. Positive RT-PCR Test Results in Patients Recovered From COVID-19;L Lan;JAMA,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3