Nuclear targeted Saccharomyces cerevisiae asparagine synthetases associate with the mitotic spindle regardless of their enzymatic activity

Author:

Noree ChalongratORCID,Sirinonthanawech Naraporn

Abstract

Recently, human asparagine synthetase has been found to be associated with the mitotic spindle. However, this event cannot be seen in yeast because yeast takes a different cell division process via closed mitosis (there is no nuclear envelope breakdown to allow the association between any cytosolic enzyme and mitotic spindle). To find out if yeast asparagine synthetase can also (but hiddenly) have this feature, the coding sequences of green fluorescent protein (GFP) and nuclear localization signal (NLS) were introduced downstream ofASN1andASN2, encoding asparagine synthetases Asn1p and Asn2p, respectively, in the yeast genome havingmCherrrycoding sequence downstream ofTUB1encoding alpha-tubulin, a building block of the mitotic spindle. The genomically engineered yeast strains showed co-localization of Asn1p-GFP-NLS (or Asn2p-GFP-NLS) and Tub1p-mCherry in dividing nuclei. In addition, an activity-disrupted mutation was introduced toASN1(orASN2). The yeast mutants still exhibited co-localization between defective asparagine synthetase and mitotic spindle, indicating that the biochemical activity of asparagine synthetase is not required for its association with the mitotic spindle. Furthermore, nocodazole treatment was used to depolymerize the mitotic spindle, resulting in lack of association between the enzyme and the mitotic spindle. Although yeast cell division undergoes closed mitosis, preventing the association of its asparagine synthetase with the mitotic spindle, however, by using yeast constructs with re-localized Asn1/2p have suggested the moonlighting role of asparagine synthetase in cell division of higher eukaryotes.

Funder

The Coordinating Center for Thai Government Science and Technology Scholarship Students (CSTS) – The National Science and Technology Development Agency

The National Research Council of Thailand (NRCT) in association with Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation

The Development and Promotion of Science and Technology Talents Project

Mahidol University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3