Improved diagnostic prediction of the pathogenicity of bloodstream isolates of Staphylococcus epidermidis

Author:

VanAken Shannon M.,Newton Duane,VanEpps J. ScottORCID

Abstract

With an estimated 440,000 active cases occurring each year, medical device associated infections pose a significant burden on the US healthcare system, costing about $9.8 billion in 2013. Staphylococcus epidermidis is the most common cause of these device-associated infections, which typically involve isolates that are multi-drug resistant and possess multiple virulence factors. S. epidermidis is also frequently a benign contaminant of otherwise sterile blood cultures. Therefore, tests that distinguish pathogenic from non-pathogenic isolates would improve the accuracy of diagnosis and prevent overuse/misuse of antibiotics. Attempts to use multi-locus sequence typing (MLST) with machine learning for this purpose had poor accuracy (~73%). In this study we sought to improve the diagnostic accuracy of predicting pathogenicity by focusing on phenotypic markers (i.e., antibiotic resistance, growth fitness in human plasma, and biofilm forming capacity) and the presence of specific virulence genes (i.e., mecA, ses1, and sdrF). Commensal isolates from healthy individuals (n = 23), blood culture contaminants (n = 21), and pathogenic isolates considered true bacteremia (n = 54) were used. Multiple machine learning approaches were applied to characterize strains as pathogenic vs non-pathogenic. The combination of phenotypic markers and virulence genes improved the diagnostic accuracy to 82.4% (sensitivity: 84.9% and specificity: 80.9%). Oxacillin resistance was the most important variable followed by growth rate in plasma. This work shows promise for the addition of phenotypic testing in clinical diagnostic applications.

Funder

National Institute of Allergy and Infectious Diseases

A. Alfred Taubman Medical Research Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3