On the molecular relationship between Hounsfield Unit (HU), mass density, and electron density in computed tomography (CT)

Author:

Sudhyadhom AtcharORCID

Abstract

Accurate determination of physical/mass and electron densities are critical to accurate spatial and dosimetric delivery of radiotherapy for photon and charged particles. In this manuscript, the biology, chemistry, and physics that underly the relationship between computed tomography (CT) Hounsfield Unit (HU), mass density, and electron density was explored. In standard radiation physics practice, quantities such as mass and electron density are typically calculated based off a single kilovoltage CT (kVCT) scan assuming a one-to-one relationship between HU and density. It is shown that, in absence of mass density assumptions on tissues, the relationship between HU and density is not one-to-one with uncertainties as large as 7%. To mitigate this uncertainty, a novel multi-dimensional theoretical approach is defined between molecular (water, lipid, protein, and mineral) composition, HU, mass density, and electron density. Empirical parameters defining this relationship are x-ray beam energy/spectrum dependent and, in this study, two methods are proposed to solve for them including through a tissue mimicking phantom calibration process. As a proof of concept, this methodology was implemented in a separate in-house created tissue mimicking phantom and it is shown that sub 1% accuracy is possible for both mass and electron density. As molecular composition is not always known, the sensitivity of this model to uncertainties in molecular composition was investigated and it was found that, for soft tissue, sub 1% accuracy is achievable assuming nominal organ/tissue compositions. For boney tissues, the uncertainty in mineral content may lead to larger errors in mass and electron density compared with soft tissue. In this manuscript, a novel methodology to directly determine mass and electron density based off CT HU and knowledge of molecular compositions is presented. If used in conjunction with a methodology to determine molecular compositions, mass and electron density can be accurately calculated from CT HU.

Funder

National Institute of Biomedical Imaging and Bioengineering

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3